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Investigation of Effects of Viscoelastic Boundary Supports on 
Transient Sound Radiated from a Rectangular Plate 

by Modal Strain Energy Method 
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(Received December 17. 1996) 

This work considers analysis of transient sound radiation from an impact-excited rectangular 

plate with viscoelastic boundary supports based on the Modal Strain Energy (MSE) method. 

Vibration of the plate is approximated by double infinite series in the spatial coordinates. Each 

term of the series is constructed with vibration modes of beams having the same boundary 

conditions as the considered plate, multiplied by a time dependent function. Modal loss factor 

of each mode is obtained by the MSE method. The sound pressure for impact excitations is 

obtained in the time and frequency domain by numerical integration of the Rayleigh integral. 

Then effects of width of the viscoelastic boundary supports on the vibration response and the 

radiated sound pressure are investigated. It is shown that there is an optimum width of the 

support. 
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I. Introduction 

Viscoelastic surface damping treatments have 

been used for many years to reduce vibration and 

noise of structures especially for beam and plate-  

like structures. Such surface damping treatments 

have been shown to be effective in vibration and 

noise control. In many cases, however, it is not 

always possible to implement them in real situa- 

tions. In such cases damping treatment at the 

boundary supports can be an alternative solution 

(MacBain, 1975 and Harris, 1988). 

Recently, Kang and Kim (1996a) proposed a 

systematic method to estimate modal properties of 

beams and plates with viscoelastic boundary sup- 

ports. For  beam vibrations, the viscoelastic sup- 

port regions are described analytically in terms of 

frequency-dependent complex stiffness and, then, 

characteristic equations of the beam structure 

supported at its ends by springs with such corn- 
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plex stiffness are derived. Natural frequencies and 

modal loss factors of  the assembled beam system 

are obtained by solving transcendental character- 

istic equations numerically. Similar approach can 

be applied to plates with viscoelastic boundary 

supports. 

A number of studies have been made on acous- 

tic radiation from impact-excited plates. Stras- 

berg (1948) calculated acoustic power radiated 

from a periodically struck diaphragm with fixed 

boundary support in the frequency domain. For- 

mulation of the radiation problem was based on 

the results of Lax (1944), who inw~stigated radia- 

tion loading on a circular clamped plate using the 

Rayleigh integral equation. Several other studies 

on the acoustic radiation from impacted plates 

have led to empirical relationships between acous- 

tic pressures and plate vibration responses. 

Nagayama et a1.(1981) reported on transient 

sound radiated from a clamped circular plate 

excited by an impulsive plane wave. Akay et al. 

(1983) investigated sound radiation from an 

impacted clamped circular plate in an infinite 
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baffle. Teon et a1.(1987) evaluated transient 

sound radiation from a clamped circular plate 

with viscoelastic layers. 

K~ng (1996) showed that there exists an opti- 

mum width of the viscoelastic boundary supports 

to obtain maximum modal damping tbr a few 

lowest modes. In this paper, transient sound radi- 

ation from rectangular baffled plates with vis- 

coelastic boundary support at each edge subject to 

an impact load is examined to observe whether 

there exists an optimum support width. Vibration 

of the plate is approximated by double infinite 

series in the spatial coordinates. Each term of the 

series consists of a product of two vibration 

modes of beams, having the same boundary con- 

ditions as the considered plate, multiplied by a 

time dependent function. Modal loss factor of 

each mode is obtained by the MSE method. 

Sound pressure radiated from the plate is 

obtained in the time and frequency domain by 

numerical integration of the Rayleigh integral. 

2. Analysis 

2.1 Equivalent system for a rectangular 
plate with viscoelastic boundary sup- 
ports 

Figure 1 (a) shows a rectangular plate of length 

a, width b and thickness h with uniform vis- 

coelastic boundary supports along the four edges. 

Each viscoelastic support has thickness H and 

width L, of which the material property related 

with deformation is given by complex modulus 

E * = E ( I + j ~ )  where ~7 is called loss factor of the 

material. 

According to Kang and Kim's work (1996a, 

b),  an equivalent system for the rectangular plate 

with viscoelastic boundary supports can be 

obtained by using stiffness parameters at the 

boundaries as shown in Fig. l (b ) .  Stiffness 

parameters Ktl and K22 are frequency dependent 

complex quantities as the moduli of  the viscoelas- 

tic support are inherently frequency dependent 

and complex. 

2.2 Equation of motion of the plate and 
associated boundary conditions 

The equation of motion of a thin, elastic, 

homogeneous, and isotropic plate subjected to an 

excitation force can be written as 

DV4w(x, y, t) + ph32w(x, y, t) /3t  2 

=:q(x,y,  t) (1) 

where 

D - E h 3 / 1 2 ( 1 - v z ) :  flexural rigidity of  the 
plate 

V 4= ~4/0.:~'4 + 34/~x2~y 2 + 84/~y4: Bi- Laplacian 

E:  Young's modulus 

w: transverse deflection 

~: Poisson's ratio 

p: mass per unit area 

q: excitation force per unit area. 

If the plate is subjected to an impact force F ( t )  
concentrated at a point (xo, y0), the excitation 

force q (x , y ,  t) can be expressed as a spatial 
Dirac delta function as follows 

Y Y 

a x 
i, 

2H+h 
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(a) Dimension of viscoelastic supports 

Fig. 1 
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) 
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(b) Modeling of viscoelastic supports 

A rectangular plate with viscoelastic boundary supports and its equivalent system 
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q ( x , y ,  t ) - - F ( t ) 8 ( x - x o ) 8 ( y - y o )  (2) 

Two boundary conditions must be prescribed 
on each of the four edges of the rectangular plate ; 
x : O , x - - a , y - - O ,  y - b  (see Fig. l (b ) ) .  The 
boundary conditions along line x = 0  are given by 

V~= D (Saw~axe+ (2 - ~) 8~w / OxSy'9 x-o 
- -  - -  h ~ l  ( w )  x=0 (3a )  

M~ = D ( 82 w / Sx 2 + u82 w / Sy 2) ~o 
=Kz2(Sw/Sx) ~=o (3b )  

where Vx and Mx are the shear force and the 
bending moment per unit length along the vertical 
edge respectively. The boundary conditions for 
the remaining viscoelastic supports can be de- 
scribed in a similar manner. 

Zero initial conditions are assumed before an 
impact is provided, i. e., 

w lt-o=O and 8w/St l t_o=O (4) 

2 .3  S o l u t i o n  m e t h o d  

Leissa(1969) suggested that an approximate 
solution to Eq. (1) can be expressed by 

w ( x , y , t ) = E E W m , , ( x , y ) g ~ . ( t )  (5) m=ln-1 

where g~n(t) is a time-dependent function and 
Wmn(X,y) a mode shape function of the un- 
damped rectangular plate system given by Wren 

( x , y ) - - X m ( X )  E, (y) .  Xm(X) and y~(y) and 
can be taken from the mode shape functions in the 
x and y directions, respectively of the associated 
undamped beams with the same boundary condi- 
tions as the considered plate : 

x +  X~ (x) = A ~  s i n / ~ a  Bm cos ~m~- 

+ C~ sinh 3mXa + D~ cosh ~m~x (6a) 

+ C~ s i n h / ? . ~ - + D ,  cosh /~n~  (6b) 

Substituting Eqs. (2), (5), and (6) into Eq. (1) 
leads to 

m~ln~176 ~ ( (  [~m )4 ( I~n )4)_]_ ph~mn] E E {  Xm n[Dgmn ~ -  + ~ -  

+2DXgY~'  gm~}=F( t )  8 ( X - X o ) 8 ( y - y o )  (7) 

where the prime and dot denote differentiation 

with respect to the spatial and time coordinates 
respectively. Multiplying both sides of Eq. (7) by 
the mode function X~(x )  Yn(y) and integrating 
over the plate makes the equation decoupled due 
to the orthogonality of Xm(x) and y~(y) as 
follows : 

M,..~m. + K.,,~g,~,,= X., (Xo) Y~ (yo) F ( l ) 
(m, n - - l ,  2, 3, "") (8) 

where 

Mmn = f~ Y dxgy (9) dO dO 
a b  /~m 4 ~rt 4 2 2  

n ~ d + 2Xm Y.X;~ Y~ ]dx y ( lO)  

Defining undamped natural frequency wren by 

[ Kmn ,~1/2 
W m ~ = ~ )  (11) 

Eq. (8) can be rewritten as 

�9 . + 2 1 Xm(xo) Y , ( yo )F( t )  gmn (l)mngmn= mmn 

(m, n = l ,  2, 3, -") (12) 

In the MSE method, it is assumed that vibra- 
tions of a damped structure can be represented by 
inserting modal damping terms into the above 
uncoupled equation as follows: 

gmn + 7mnW,nn~r mn + W2mngmn 

1 
- Mm, Xm(xo) Y,(yo) F ( t )  

(m, n = l ,  2, 3, ".)  (13) 

where Z?mn, lOSS factor of the mn-th mode, is 
defined by 

vPlate @ V~ dge )ran (14) 
Vledg e 

In Eq. (14), V p~a~e is the modal strain energy of 
the plate, and V~ ug~ and Vf dg~ respectively denote 
the modal strain energy at the boundary support 
due to real and imaginary parts of the complex 
stiffness at the edge and they have the following 
forms as given by Kang (1996) : 

D ra rbr/82W., \2 /82W. \2 V plate) ran-- I I ]l  mn ~ __ f mn 

$ 2 Wm~ 82 W ~  
+ 2 u  8x 2 3y2 
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(1 v { ~]O2Wm n 2 +2 - ) \ - S x ~ Y ] j d x d y  (15-a) 

(VF * ) Re[K"] { f  ~ 
~= 2 [ ~%(x'~ 

+ y) 

+ WL (a, y)]dy} 

8y 

+( 8Wmn(x, b) )2Jd x 

+( ~ %  (a, u) 
\ S x  )2] dy } (15-b) 

Inn[K.] {fo~[ W~(x,O) ( Vf~g~)~'=  2 - 

+ b)]d +ff[ y) 

+ WL (a, y)]+} 

8y 

0 ' 

+/'~[/jo [~ aw~,,(o,g y) )~ 

+[ aW~.(a, y) \ 8x )Z]dy} (15-c) 

From Eq. (4), Eq. (5), and orthogonality of the 

undamped modes, initial conditions for g ~ ( t )  
are given by:  

g m ~ ( 0 ) - 0  and o#m. (0) --:0 (16) 

Solving Eq. (13) together with Eq. (15) using 

the Duhamel integral, g~.(t)  can be obtained as 

Xm(xo) E,(yo) f t  g~(  t ) - F ( s )  Mmn ~ mn .to 
e x p [ - - ~ . W m . ( t - s ) ]  sin [ ~ m . ( t - s ) ] d s  (17) 

where the damping ratio ~mn and damped natural 

frequency (~,~. are defined respectively by 

~.,.= ~"" X, . .= I,/~-- ~.,,, "~ �9 co,.. (18) 
2 ' 

Substituting Eq. (17) into Eq. (5) yields dis- 

placement and acceleration responses of the plate 

as follows : 

~ Xm(xo) Y.(yo)Xm(x)  )~(y)" w(x, y, t ) :  ~_,~] M,~.~m. 

f tF (s) exp[  - ~mnO)mn (t S) ]. 

sin [~m.( t -s )]ds"  (19-a) 

#(x,y, t)== ~2 ~3 X~(xo) rn(y0) X.,(xl ~ (y ) .  
m=ln=l M,,, 

{ f ( t )  + f ' e ( s ) e •  

2~,,--1 . x [ - - ~ ~  sm(~,~.(t-s)) L.,/]-$L 

--2~mn~mnCOS(~mn(t-s))]ds} (19-b) 

Linear spectra of the acceleration in the fre- 

quency domain is given by 

~ X~ (x0) 14, (y0) -co~W(x, y, 2o) = - E E m=ln=t Mmn(Oran 

Xm (x) Y~ (y) [1 wZF(Jw) -- ((.O/tOmn)2 + jT]mn((O/O)mn)T 

(20) 
where W ( x , y ,  rio) and F(jw) are the Fourier 

transform of the w (x, y, t) and F ( t ) ,  respective- 

ly. 

2.4 Acoustic  radiation 

Pressure of the sound radiated from a vibrating 

plate in an infinite baffle can be obtained by 

eva lua t ing  the Rayle igh  surface in tegral  

(Rayleigh, 1945), in which areal elements of the 

plate are regarded as simple point sources of 

outgoing waves and the sound pressure level at a 

point (d,  ~ ,  0) in space as shown in Fig. 2 is 

given by 

p(d, R(x,y) 

1 
R (x, y) dxdy (21) 

where po and c are mass density and wave veloc- 

/ 
Fig. 2 

(d,v,O) 

/ "  
~ X  / 

a 

Coordinate system for sound pressure 
estimation 
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ity of the acoustic medium respectively, /b (x, y, 

t) the acceleration-time history of the plate vibra- 

tion, and R (x, y) the distance from the receiver 

to a point (x, y) on the plate surface. 

Linear frequency spectra of the sound pressure 

is given by 

0 ;co~- 9o ~ ~ Xm (x0) Yn (y0) P ( d ,  ~ ,  ,~ , - - - - - ~  ~ - - ~ - -  �9 
2 7 / "  m = l n = l  amn(.Omn 

f ~ [.b Xm Y,,exp ( - j w R / c )  
Jo ~ d x d y .  

w2 F ( jo) ) 
] 1 -  (o)/~,~,,)~+j~,~.(o)/o),~) ] (22) 

3. Results  and Discuss ion  

Vibration response and consequent sound radi- 

ation of a thin square plate subject to an impact 

at the plate center is computed numerically in the 

time and frequency domain for several widths of 

the viscoelastic boundary supports along the four 

edges. Geometry and material parameters of the 

plate are : a=200  mm, h = 1 . 6  mm, E=210 ,000  

MPa, r?=0.01, u--0 .3 ,  0=7 ,850  Kg/m 3. Thick- 

ness and width of the viscoelastic boundary sup- 

ports are: H- -0 .254  mm and L = 4 ,  8, 16, and 32 

ram, and the material properties are quoted from 

Kang(1996), which are modeled as springs with 

complex stiffness as in Kang(1996). Shape of the 

pulse used for the impact is a rectangle with 

duration of T / = 0 . 1  ms and magnitude of F =  

700N. 
Time domain acceleration response at center of 

the plate and sound pressure at a point on the z- 

axis 0.4m apart from the plate are shown in Figs. 

3 and 4 respectively. Figures 5 and 6 show the 

results in frequency domain. Figure 7 shows 

variation of the peak sound pressure level with 

the viscoelastic support width for various vibra- 

tion modes. It can be seen from these results that 

there exists an optimum support width around 8 
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Fig. 9 Comparison of sound pressure response in 
flequency domain at a point z=0 .4  mm 
between ciscoelastic and clamped boundary 
supports 

mm at which the sound radiation is minimized. 

Figure 8 compares the sound pressure from plates 

with viscoelastic boundary supports(width L = 8  

mm) with the one under fixed boundary condi- 

tion in time domain. Figure 9 shows the corre- 

sponding sound pressure levels in frequency 

domain, where it can be seen that roughly 20 dB 

can be lowered by an appropriate width of vis- 

coelastic boundary support. 

4. Conclusion 

Effects of viscoelastic boundary support widths 

on the vibration as well as radiation of sound has 

been analyzed in the time and frequency domain 

for a square plate subject to an impact loading. 

Damped responses have been obtained by 

introducing modal damping defined by the modal 

strain energy method. It is shown thal viscoelastic 

treatment at the boundary suppor! is a very 

practical tool for reduction of the vibration and 

sound radiation, and that width of the viscoelastic 

support must be adjusted to maximize the effec- 

tiveness of the treatment. 
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